
Model Fit Object
The read_fit_model() function returns
the cmdstan::CmdStanMCMC object,
for a model that has finished running.
fit1 <- read_fit_model(mod1)

use cmdstan methods, e.g.
fit1$cmdstan_diagnose()
fit1$summary()

Submitting a Model
Calling submit_model() ultimately
triggers a call to cmdstanr$sample()
Pass arguments through to $sample()
mod1 <- set_stanargs(
 mod1, list(chains = 4, seed = 1234)
get_stanargs(mod1) # prints currently set args

Check that model is ready to submit (optional)
check_stan_model(mod1)

Preview the data set that will be used (optional)
standata <- build_data(mod1)

Load the cmdstanr::CmdStanModel object (optional)
stanmodel <- get_model_path(mod1) %>%
 cmdstanr::cmdstan_model(compile = FALSE)

Submit a model to be run
fit1 <- mod1 %>% submit_model()

submit_model() returns a CmdStanMCMC object.

Creating a Model de novo
To submit or interact with models in bbr you need a
model object. You can create a model object (and
associated .yaml file) de novo using new_model().
MODEL_DIR <- here::here("model/stan")

mod1 <- new_model(file.path(MODEL_DIR, "mod1"),

.model_type = "stan")

This creates several “scaffold” files on disk. You can
open them with these helper functions:
open_stanmod_file(mod1)

open_standata_file(mod1)

open_staninit_file(mod1)

See below for copying from a parent model.
You can read a previously created model with
read_model().
mod2 <- read_model(file.path(MODEL_DIR, "mod2"))

Setup
bbr is an R interface for managing Stan and other modeling
software, with a focus on reproducibility and traceability.

To use bbr with Stan, you need to have cmdstan installed.
Follow the “Getting Started with CmdStanR” instructions to
ensure you have Stan and CmdStan configured correctly.

Install CmdStan:
cmdstanr::check_cmdstan_toolchain()

cmdstanr::install_cmdstan()

You need to load both the core bbr package and the
bbr.bayes package.

library(bbr)

library(bbr.bayes)

Stan Modeling with bbr.bayes : : CHEAT SHEET

Convert to a Draws Object
bbr.bayes has methods for the
posterior::as_draws() family of
functions. Pass a model or fit object.
draws1 <- as_draws(mod1)

use posterior methods
summarize_draws(draws1)
rhat(draws1)
thin_draws(draws1)

get draws as a tibble
draws_df1 <- as_draws_df(mod1)

Copying from a Parent Model
copy_model_from() creates a new model,
based on an existing model. It begins as an
exact copy, with only the name changed.

mod2 <- copy_model_from(mod1, “mod2”)

open any files you want to change
open_stanmod_file(mod2)
open_staninit_file(mod2)
compare, once you have made changes
model_diff(mod2)
model_diff(mod2, .file = “init”)

Standalone Generated Quantities
copy_model_as_stan_gq() creates a
special class of model for running
generated quantities without
sampling.

mod_gq <- copy_model_as_stan_gq(mod2)
open_stanmod_file(mod_gq)
open_stan_fitted_params_file(mod_gq)

runs $generate_quantities()
submit_model(mod_gq)

bbr.bayes 0.1.0 • updated 2023-04

Assorted Helper Functions
check_stan_model(mod1) # check if ready to submit
check_up_to_date(mod1) # check if changed since submitted
get_model_id(log_df) # return name of model as a string
res <- build_data(mod1) # build Stan input data
add_stanmod_file(mod1,
 .source = "/path/to/source.stan") # add external files
model_diff(mod2, .file = "standata") # compare against parent

get absolute file paths
mod_path <- get_model_path(mod1)
dir_path <- get_output_dir(mod1)
yaml_path <- build_path_from_model(mod1, "-param.yaml")

Create initial model
MODEL_DIR <- here::here("model/stan")
mod1 <- new_model(
 file.path(MODEL_DIR, 1001),
 .model_type = "stan") %>%
 add_tags("base models")

Submit model and view results
fit1 <- mod1 %>% submit_model()
fit1$cmdstan_diagnose()
fit1$summary(variables = c("lp__", "emax"))

mod1 <- mod1 %>% add_notes(
 "Divergent transitions, adjusting delta")

Create new model based on initial
model
mod2 <- copy_model_from(
 mod1, "mod2", .inherit_tags = TRUE) %>%
 set_stanargs(list(adapt_delta = 0.98))

Edit stan file and compare to parent
open_stanmod_file(mod2)
model_diff(mod2)

Submit new model and view results
fit2 <- submit_model(mod2) ; ...

Add notes (be sure to reassign to object)
mod2 <- mod2 %>%
 add_notes("MCMC sampling looking good")

Create generated quantities model
mod_gq <- copy_model_as_stan_gq(mod2)
open_stanmod_file(mod_gq)
sims2 <- submit_model(mod_gq)
sims2$draws() # get gq for predictive checks
Continue to next model…
mod3 <- copy_model_from(mod2) %>%
 replace_tags("base models", "covariate mods")

Model Annotation: Tags and Notes and Description
The model object has tags, notes, and description fields, to
annotate the model during development. Tags are concise and
can be used for filtering and organizing your models, while notes
are free form text to notate decisions and observations. The
description field must be a single string.

Note: when adding or modifying these attributes, you must reassign the
modified model object. You can pipe several modifications together.
 mod4 <- mod4 %>%
 add_tags("covariate mods") %>%
 replace_tags("centered params", "non-centered params") %>%
 add_notes("First model to use non-centered parameterization")
Defining a glossary of tags
Tags are most useful when defined in a glossary. See “Details” of ?modify_tags
for recommendations.
Modifying the model object
Helper functions exist to add, replace, or remove the tags, notes, description,
and based_on fields.
mod1 <- mod1 %>% add_description("Base model")
mod1 <- mod1 %>% replace_based_on("1001", "1002")

Example Workflow

Pull all models in a given directory into a tibble with run_log().

 log_df <- run_log(MODEL_DIR)
Use stan_summary_log() to pull simple diagnostics into a tibble, or
add_stan_summary() to append this output to a run log tibble.

Checking model and data are up to date
Pass a model object or run log tibble to
check_up_to_date() to verify none of the
control streams or data files on disk have
changed since the models were run.

This checks if any model or data files have
changed since the model was most recently
submitted.

Creating a Run Log

run lp___median lp___rhat num_divergent notes
1001 -114.065 1.00050 3 “Divergent transitions, adjusting delta”
1002 -111.832 1.00153 0 “MCMC sampling looking good”
1003 -109.239 1.00467 0 “Adding covariates, non-centered params”

log_df <- run_log(MODEL_DIR) %>%
 add_stan_summary() %>% # joins in diagnostics columns
 collapse_to_string(notes) %>% # formatting for printing
 select(run, lp___median, lp___rhat, num_divergent, notes)

