Data Ingestion

Ingest Data.

read_nonmem()

read nonmem files easily

read_phx()

to more easily read data with a 2nd row with units common to phx data

write_nonmem()

easily write a csv file compatible with nonmem

Data Manipulation

as_numeric()

convert to numeric passing through character for safety

fill_backward()

given NA values fill them with the next non-na value

fill_forward()

given NA values fill them with the final non-na value

ids_per_plot() chunk() chunk_grp() chunk_list() chunk_grp_list()

split IDs into groups to use for subsequent plotting

max_through()

give the max value up to that point

min_through()

give the min value up to that point

set_bins()

given a set of bin ranges, assign each value to a bin

unique_non_numerics()

find all unique non-numeric values

Summaries

s_pauc_() s_pauc()

summarize paucs

s_quantiles_() s_quantiles()

summarize quantiles for a column

Formatting

capitalize_names()

capitalize all names for a dataframe

lowercase_names()

lowercase all names for a dataframe

char_to_numeric()

convert all columns to numeric

cols_to_numeric()

convert column to type numeric

ordinal_to_binary_()

convert a column of categorical covariates into a number of columns with a binary flag for each category

replace_dots()

Convert '.' values into missing values.

pad_left()

add left padding to a vector of values

Pharmacometrics-specific

auc_inf()

Calculate AUCt-inf

auc_partial()

Calculate partial AUC

resample_df()

resampling

strip_curves()

basic curve stripping to get initial estimates

wam()

wam function

misc

jprint()

print multiple values joined together

view_creator()

create view commands that save rds files to where a shiny app is listening for them

peek()

peek at the results in a dplyr pipeline

pad_left()

add left padding to a vector of values