Summarize the parameter estimates, run details, and any heuristics of a
bootstrap run, saving the results to a boot_summary.RDS
data file within the
bootstrap run directory.
summarize_bootstrap_run(.boot_run, force_resummarize = FALSE)
bootstrap_estimates(.boot_run, format_long = FALSE, force_resummarize = FALSE)
get_boot_models(.boot_run)
A bbi_nmboot_model
object.
Logical (T/F). If TRUE
, force re-summarization.
Will only update the saved out RDS
file when specified via
summarize_bootstrap_run()
. See details for more information.
Logical (T/F). If TRUE
, format data as a long table,
making the data more portable for plotting.
bootstrap_estimates()
quickly extracts and formats the parameter estimates
from each model run. If the data was previously summarized, the data will be
read in instead of re-executing (this can be overridden via
force_resummarize = TRUE
).
summarize_bootstrap_run()
does the following things:
Tabulates run details and heuristics.
Calls summary_log()
and binds the results to the parameter estimates.
bootstrap_estimates()
will include this appended model summary
information if a boot_summary.RDS
data file exists.
Either saves this data out to boot_summary.RDS
, or reads it in if it
already exists (see section below).
Formats the returned object as a bbi_nmboot_summary
S3 object, and
displays key summary information when printed to the console.
The first time summarize_bootstrap_run()
is called (or if
force_resummarize = TRUE
), it will save the results to a boot_summary.RDS
data file within the bootstrap run directory. If one already exists, that data
set will be read in by default instead of being re-summarized.
The purpose of this is functionality two fold. For one, it helps avoid the
need of re-executing model_summary()
calls for a large number of runs. It
also helps to reduce the number of files you need to commit via version
control (see cleanup_bootstrap_run()
).
summarize_bootstrap_run()
: Summarize a bootstrap run and store results
bootstrap_estimates()
: Tabulate parameter estimates for each model
submission in a bootstrap run
get_boot_models()
: Read in all bootstrap run model objects
if (FALSE) {
.boot_run <- read_model(file.path(MODEL_DIR, "1-boot"))
boot_sum <- summarize_bootstrap_run(.boot_run)
# Optionally compare to original estimates
param_estimates_compare(boot_sum)
# Long format is helpful for plotting estimates:
bootstrap_estimates(.boot_run, format_long = TRUE) %>%
dplyr::filter(grepl("THETA", parameter_names)) %>%
ggplot(aes(x = estimate)) +
facet_wrap(~parameter_names, scales = "free") +
geom_histogram(color = "white", alpha = 0.7) +
theme_bw()
}