pmtables
R/make-boot-pmtable.R
make_boot_pmtable.Rd
Generate a complete bootstrap parameter table ready for rendering via pmtables
make_boot_pmtable(
.df,
.pmtype = c("full", "fixed", "structural", "covariate", "random"),
.span_model_label = "Final model",
.span_boot_label = "Non-parametric bootstrap",
.drop_model_ci = TRUE,
.width = 1
)
Combined dataset of model and bootstrap parameter estimates. See examples.
Parameter table type. Options include:
"full"
(all rows in .df
retained in pmtable). This is the default.
"fixed"
(all rows with type = "Struct" or "effect"),
"structural"
(all rows with type = "Struct"),
"covariate"
(all rows with type = "effect"),
"random"
(all rows with greek = "Omega" or type = "Resid").
A label for the span above columns relating to the model that was bootstrapped.
A label for the span above columns relating to the confidence interval of bootstrap estimates.
Logical (T/F
). If TRUE
(the default), drop original
CI columns (ci_[x]
).
Notes width. Defaults to 1.
Generates specific parameter tables by filtering and using pmtables
. This
function expects a data.frame with both the regular parameter estimates and
the bootstrap parameter estimates. See "Examples" for more detail.
This function:
Filters to columns needed for specific parameter tables
Panels by "type"
Makes "abb"
, "greek"
, "desc"
blank (no title)
Note that description is removed when .pmtype = "random"
. See
?pmtables::st_mutate()
if you want to add it back in.
Attaches notes
Rename "value" to "Estimate" and "shrinkage" to "Shrinkage (%)", if applicable
Note:
If these pmtables
settings do not work for your parameter table, you can
overwrite them afterwards using desired pmtables
commands.
if (FALSE) { # \dontrun{
model_dir <- system.file("model/nonmem", package = "pmparams")
paramKey <- file.path(model_dir, "pk-parameter-key-new.yaml")
# Parameter estimates
mod <- bbr::read_model(file.path(model_dir, "106"))
param_df <- define_param_table(
.estimates = mod,
.key = paramKey,
) %>% format_param_table(.prse = TRUE)
# Bootstrap estimates
boot_run <- bbr::read_model(file.path(model_dir, "106-boot"))
boot_df <- define_boot_table(
.boot_estimates = bbr::bootstrap_estimates(boot_run),
.key = paramKey
) %>% format_boot_table()
# Combine parameter estimates with bootstrap estimates
combine_df <- dplyr::left_join(param_df, boot_df)
# Fixed effects table
make_boot_pmtable(.df = combine_df, .pmtype = "fixed") %>%
pmtables::stable() %>%
# preview in Rstudio viewer (requires `magick` and `pdftools`)
pmtables::st_as_image(border = "0.8cm 0.7cm 1.8cm 0.8cm")
# Random effects table
make_boot_pmtable(.df = combine_df, .pmtype = "random") %>%
pmtables::stable() %>%
pmtables::st_as_image(border = "0.8cm 0.7cm")
} # }