General Linear ODE Model Function
Table of Contents
- 1 Description
- 2 Usage
- 3 Arguments
- 4 Return value
1 Description
Function pmx_solve_linode
solves a (piecewise) linear ODEs model with coefficients
in form of matrix \(K\)
\begin{equation} y^\prime\left(t\right) = Ky\left(t\right) \end{equation}
For example, in a two-compartment model with first order absorption, \(K\) is
\begin{equation}
K = \left[\begin{array}{ccc}
-k_a & 0 & 0 \\\
k_a & -\left(k_{10} + k_{12}\right) & k_{21} \\\
0 & k_{12} & -k_{21}
\end{array}\right]
\end{equation}
where \(k_{10}=CL/V_2\), \(k_{12}=Q/V_2\), and \(k_{21}=Q/V_3\).
2 Usage
matrix = pmx_solve_linode(time, amt, rate, ii, evid, cmt, addl, ss, K, biovar, tlag )
3 Arguments
K
System parameters.K
can be either- a
matrix
for constant parameters in all events, or - an array of matrices
matrix K[nt]
so that the \(i\)th entry of the array describes the model parameters for time interval \((t_{i-1}, t_i)\), and the number of the rows equals to the number of event timent
.
- a
- See Tables in Section Events specification for the rest of arguments.
4 Return value
An n
-by-nt
matrix, where nt
is the number of time steps and n
is the number of rows(columns) of square matrix K
.